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Abstract 

A probabilistic kinematics  is described. The point  of  departure  is the in t roduct ion of  
probabil i ty distr ibutions for measurements  of  length and time. For macroscopic systems,  
the  usual Lorentz t ransformat ions  remain valid. Fundamenta l  parameters  o f  length and 
t ime,  which  measure  the  dispersions o f  the  probabil i ty distr ibutions,  are postula ted to 
be Lorentz invariants. C ommen t s  are included concerning the  es tabl ishment  o f  co- 
ordinate  systems.  The kinematics  itself does not  indicate how the  probabilistic character 
o f  space and t ime measurements  is to be incorporated into dynamical  calculations, and 
addit ional  prescriptions are necessary. In order bo t h  to investigate dynamical  applica- 
t ions and  to set a limit on the  values o f  the  fundamenta l  parameters ,  calculations are 
under taken  o f  the  kinematical  corrections to the  potential  and kinetic energies for the  
shift be tween  the  hydrogenic  2s and 2p levels. 

1. Introduction 

Speculations on a way in which the kinematics that underlies the laws of 
physics may be modified to become probabilistic in character are described. 
The conceptual basis of the speculations lies in the intuitive idea that it should 
be impossible to speak of physical events occurring at a point in space-time. 
A more practical argument for avoiding the concept of a point in space-time 
is the appearance of difficulties in various theories on account of singularities 
that appear in the equations. An attractive objective is to work with a kine- 
matics that precludes point singularities in principle. Toward this end the 
introduction of a fundamental length into the laws of physics has often been 
discussed. 

In the present speculations, strict validity of the Lorentz transformations is 
presumed only for macroscopic systems. The point of departure is the intro- 
duction of probability distributions for measurements of length and time. 
The parameters that measure the dispersions of the distributions are postulated 
to be Lorentz invariants. 
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2. Kinematical Postulates 

It is postulated that the Lorentz transformations are to be replaced by 
the probability laws described here. For the most part, the discussion is 
carried out in terms of a single spatial variable, x, and the variable t, where 
t is the speed of light times the time. The observations described in the 
statement of the postulates are stated in strictly classical terms and possible 
complications of quantum origin are ignored. This is in keeping with a guid- 
ing philosophy that the kinematical and dynamical aspects of the problems 
are to be kept separate. Simultaneous observations of  a pair of  complemen- 
tary variables is not implied. In view of the probabilistic character of  measure- 
merits of spatial coordinates and the time, numerous questions must arise as 
to how one can establish coordinate systems. Some comments concerning 
these questions are given in Appendix A. 

Consider a set of N observers all of whom observe a single event and 
record its place and time of occurrence as x and t. Al lN observers are in the 
same Lorentz reference system. It is postulated that the number of observers 
who find the event occurring in the spatial interval x to x + zSx and in the 
time interval t to t + At is Nxt2~xAt, with 

NxtA~x At = Nf(x, xo, L )Axf( t, to, T)At (2.1) 

Here xo and to denote space and time positions about which the events are 
expected to cluster. The parameters L and T are measures of the spreads of 
the space and time observations, respectively, from the centers of the pro- 
bability distributions. Conventionally, we would say that all observers 
observe xo and to only. In order to avoid gross inconsistencies with current 
agreement between experiment and theory we must take L and T to be of 
the order of dimensions associated with elementary particles, i.e., L < 10 -13 
cm, approximately. We also suspect that, in the units employed, L ~ T because 
the speed of light is the only fundamental kinematical constant. If  we prefer, 
an alternative expression of the postulate may be given in terms of repeated 
observations of a set of events by a single observer in which the events are 
repeatedly set up with similar initial conditions. The functions f(x, xo, L) and 
f(t, to, T) evidently must have the property 

f dxf(x, xo,L) = f dtf(t, to, T) = 1 (2.2) 

With the introduction of these probability distributions for observations of 
space and time positions, the concept of a point should no longer occur in a 
formalism. The nature of the idea is that, in applications, a point in space- 
time is replaced by an ensemble constructed in accordance with the forms 
postulated for the probability distributions. 

Next, we consider N observers in a second Lorentz reference system which 
travels along the +x axis with speed v relative to the first system. Observa- 
tions made by observers in the second system are denoted by primes. The 
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number of observers who find the event occurring in the spatial interval x '  
to x '  + &x' and in the time interval t '  to t '  + At' is N x t & x ' A { ,  with 

Nxt&X' &t' ' ' ' ' ' = N f ( x ,  xo ,  r ) & x  f ( t ,  to, T)At '  (2.3) 

The parameters L and T are to be invariant, as is the functional form of the 
probability distribution. Equations of the form (2.2) also hold for the primed 
variables. 

The centers of the distributions in the two systems are connected by the 
Lorentz transformations 

t 

xo = 7(x0 - vto) 
(2 .4 )  

t a  = ~'(to - vxo )  

where 7 = (1 - v2) -v2. In the units employed, v is the ratio of the relative 
speed of the two coordinate systems to the speed of light. In view of the 
probabilistic nature of the postulates, the speed v is no longer well defined, a 
consideration that will be discussed in a later section. It is evident that the 
probabilistic transformations go over into the usual Lorentz transformations 
for macroscopic dimensions, provided L and T are of a size characteristic of 
elementary particles and the distribution function f is sharply peaked about 
its center. 

Finally, it is to be noted that the group property of the Lorentz trans- 
formations will not be lost. In this connection, it is not meaningful to discuss 
any direct relationship between the arguments of the probability distributions 
in different Lorentz systems, i.e., no equations directly relate x and t to x '  
and t'. 

3. Form o f  the Probability Distribution 

The probability distribution for the observation of space or time co- 
ordinates is expected to have a well-defined peak, which occurs at xo or to, 
and is expected to be symmetrical about the peak, in which case the distri- 
bution should depend on (x - xo) 2 or (t - to) 2. These expectations are in 
accordance with establishment of the kinematics independently of dynamical 
considerations and do not envision a situation analogous to that in general 
relativity in which the geometry itself is determined by dynamical factors. If  
the latter point of view were adopted, the form of the probability distri- 
bution and, perhaps, the magnitudes of L and T would be influenced by 
dynamical factors. 

A more restrictive consideration follows from the recognition that the 
postulate, Eq. (2.1), could have been stated in terms of the measurement of 
intervals of  space-time between two events rather than in terms of the co- 
ordinates of a single event. In fact, since there must be some way in which 
the origin of the space-time coordinate system is defined, the postulate 
implicitly assumes that a probability distribution of similar form applies to 
the difference in coordinates between the event in question and the event 
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which defines the origin; the probability distribution for t = Xa + xb is to be 
of the same form as the probability distributions for Xa and xb. Given that 
the probability distributions for xa and xb are of the forms f(xa, Xao, L) and 
f (xb,  xbo, L), respectively, the number of observations of r that lie between 
r and r + 2xr is given by the convolution integral 

Ndxr ; dxa f (Xa ,Xao ,L) f ( r -  xa,xbo, L)=N~rg(r,  ro,L ') (3.1) 

where N is again the number of observations, so that 

N f dr g(r, ro, L') = N (3.2) 

We demand that the distribution in r be of the same form as the distri- 
butions in xa and xb, hence, g(r, ro, L') =f(r, ro, L'). We further expect 
that the centers of the distributions will be connected according to 
ro = Xao + xbo. The parameters which measure the spreads of the pro- 
bability distributions are expected to obey the inequality L '  > L. 

The normal of Gaussian distribution has the expected properties. If we 
identify 

f(Xa, XaO, L) = (27r)-l/2L -1 exp [--(Xa -- XaO)2/2Z 2] (3.3) 

then 

g(r, ro, L')  = (2rr)- l /2z ' - I  exp [ - ( r  - ro)2/2L ' 2] (3.4) 

with ro = xao + xbo and L'  = (2)1/2L. The spread parameters are identified 
as the standard deviations of the Gaussian distributions. A similar discussion 
may be given for the time variable. The restrictions that have been imposed 
do not uniquely demand the Gaussian distribution. For example, the Cauchy 
distribution f(x,  xo, L) e: L~ [L 2 + (x - xo)2], which is familiar as the form 
of a resonance curve, is in accord with the expectations (Zehna, 1970). (The 
moments of the Cauchy distribution do not exist, which would make its use 
in some computations unsatisfactory.) 

4. Velocity 

Because of its importance in connection with the Lorentz transformations 
and because of its use in some subsequent considerations, the probability 
distribution for a component of velocity will be discussed. The x component 
of velocity is defined as v = S/H, where S is an interval of distance along the 
x axis and H is an interval of time. In accordance with the discussion in the 
preceding section, the probability distributions for S and H may be denoted 
f(S, So, L') and f(H, He,  T'), respectively. We also define vo = So/Ho. The 
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number of observers who find the x component of  velocity in the interval 
v t o v +  Av i s ( t '=x /2L ,  T '=x/2T)  

NvAv =NAy f dHIHIf(H,  Ho, T') f (S =gv, So,L') (4.1) 
- -  e x a  

Gaussian distributions for f(S,  So, L ')  and f(H, Ho, T') are inserted to give 

N d X  = . -1  (v2 r//; + L/r)-1  exp [(- /~o~/4)(1/r 2 + Vo2/L 2)] 

+ 2-' ~r-*/2Ho(/? + ovoT2)(L 2 + v2T2)-3/~ 

x erf[(2LT)-IHo(L 2 + vvoT2)(L ~ + v2T2) -l/z] 

x exp[ -4 -1Ho2(L  2 + v2T2)-l(v - vo) 2] (4.2) 

A Gaussian approximation to this distribution becomes valid if the velocity 
measurement is made over a mean time, Ho, large compared with the time 
parameter T and if the velocities of interest satisfy Iv - v o l ~  I vo I. The 
distribution is then 

Nv/N = (21r)-l/2s-I exp [ - (v  - vo)2/2s 2] (4.3) 

with 

s = 21/aITol-l(L 2 + voZTZ) v2 

The interpretation that may be given to these considerations is that a 
Lorentz reference system may be defined with precision only if the observa- 
tions needed to define the speed of the reference system are made over a 
time interval that is large compared with the time parameter T. As the know- 
ledge improves of a velocity component with which a Lorentz reference 
system moves relative to another system, the knowledge is sacrificed of the 
corresponding component of position at which the velocity measurement 
was made; the product of the mean time over which the set of velocity 
measurements is made and the standard deviation of the Gaussian approxima- 
tion to the velocity distribution cannot be less than L' .  

5. Relationship between L and T 

A time interval may be defined in terms of an interval of distance and a 
standard velocity. According to this prescription we may define the interval 
of time, H, as H = 2S/c, where S is a distance interval and e is the speed of 
light, which is taken to be unity (in our units) by definition. The measure- 
ment procedure is as follows: At time ta a light pulse leaves spatial point ra. 
A reflector is located at spatial point rb. The reflected light pulse arrives back 
at spatial point ra at time tb. The time interval is H = tb - ta. The procedure 
measures H, not ta and t b individually. The interval of distance is S = i rb - ra l- 
Evidently, the measurement of the time interval involves the determination 
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of the three components of each of two spatial position, i.e., in terms of the 
measured quantities 

S = [(Xb -- Xa) 2 + O'b - -Ya )  2 + (ZZ, -- Za)2] 1/2 (5.1) 

The measurements of the various components of position yield probability 
distributions in accord with previous postulates. The probability distribution 
for H may then be worked out if we assume Gaussian distributions with 
standard deviations of L for each of the position components. The relation- 
ship between L and T is obtained if we consider the "asymptotic" case in 
which the time interval is sufficiently large that the spatial coordinates of 
interest satisfy, for example, 

[ ( X b  - -  X b O )  - -  (9Ca - -  Xa0)[ '~ [ X b O  - -  xaol (5.2) 

Then, the probability distribution for S is given, with good approximation, 
as a Gaussian with standard deviation L'. A Gaussian probability distribution 
for a time interval should have a standard deviation of T ' ,  according to our 
previous postulates. Hence, we conclude that L = T. 

It is inherent in this prescription for time interval measurements that the 
origin of a probability distribution for the time is assigned entirely to the 
measurements of position components and no consideration is given to a 
distribution of values for the speed of light. If a time standard is defined 
according to the prescription given here, the speed of light is not measured 
per  se, but other velocities may be measured using the time standard that 
has been established by use of light pulses. 

6. Dynamical  Considerations 

The foregoing considerations define the kinematics. Unlike special rela- 
tivity, experiments that might test the kinematics, and that are strictly 
kinematical in nature, do not suggest themselves. For magnitudes of L and 
T that may be expected, departures from conventional theory should only 
occur in experiments conducted on a microscopic scale, and strictly kine- 
matical experiments on that scale are difficult to envision. 

Any test of the speculations necessarily seems to involve a dynamical 
application of the kinematics. It is to be emphasized that the manner in 
which the probabilistic nature of the kinematics is to be introduced into a 
dynamical calculation is not indicated by the kinematics itself, but additional 
prescriptions are necessary. Accordingly, there may be some element of truth 
in the kinematical speculations that becomes invalidated by an incorrect 
dynamical prescription. 

In carrying through an example of a possible dynamical calculation, we 
try to obey the philosophy that the probabilistic nature of the kinematics is 
to be introduced in a classical sense and the quantum phenomena are to be 
superimposed in a conventional manner. This is in contrast to any attempt 
to "explain" the probabilistic quantum effects in terms of the probabilistic 
nature of the kinematics (which is regarded as unsound in principle) or, 
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alternatively, any attempt to weave together the probabilistic features of the 
kinematics and quantum mechanics in some relatively complicated manner. 
Other than a preference for simplicity, there is no argument against the latter 
type of procedure. 

Quantum electrodynamics probably provides the most exacting tests of 
current theoretical physics. In order both to investigate a possible procedure 
for a dynamical application of the kinematics and to estimate an upper limit 
on the parameter L that does not lead to a contradiction with one of the 
more precisely verified applications of extant physical laws, we will compute 
a correction to the Lamb shift on the hydrogenic 2s state that might be attri- 
buted to the probabilistic nature of the kinematics. The computation is 
commenced for a neutral Yukawa type field (Yukawa, 1935) but is soon 
specialized to the case of zero mass for the field quanta to yield a modification 
of the coulomb potential. 

The classical field amplitude, U(r), is produced by a source distribution 
Pl (r'). This field interacts with a second charge distribution, p2(r). The 
interaction potential is computed and used in a simple, conventional calcula- 
tion of the energy of the hydrogenic 2s state. For the interaction of  two point 
charges, we would conventionally take the two charge distributions, pl and 
p2, to be delta functions. This has the connotation that, in the conventional 
formulation of the problem, each charge can be associated with a particular 
point in space. The probabilistic nature of the kinematics is introduced by 
replacement of the delta functions by probability distributions that represent 
the probability for observing each charge with particular values for the spatial 
coordinates. Although the effect is the same as the assumption of smeared- 
out charge distributions, the conceptual basis is different. The probability 
distributions are chosen to be Gaussian in form, although it has been noted that 
a uniqueness argument for this form is lacking. 

The expression for U(r) is 

U(r) = -4rr f G(r, r') Pl (r') dr' (6.1) 

In order that U(r) satisfy the classical field equation (V 2 - k2)U(r) =-47rp1(r) 
we have, for tile Green's function, 

G(r, r') = -(4zr) -~ exp( -k  ! r - r '  t)/Ir - r't (6.2) 

The interaction of the two charge distributions is 

W = -4rrff G(r, r') Pl  (r ') p2(r )  dv dr' (6.3) 

The probability distributions are introduced according to pl  = qlfl(r' ,  rl,  L) 
and p2 = q2f2(r, r2, L), with 

f2 (r, r2, L) = (2rr) -a/2L -3 exp [ - ( r  - r2 )2/2L2 ] (6.4) 

and a similar expression for f l (r ' ,  rl ,  L). The constants ql and q2 are the 
values of the two interacting charges. The centers of the two probability 
distributions are denoted as rl and r2. 
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New variables are introduced as R = r - r2, R '  = r '  - r l ,  and Ro = r2 - r l ;  
then S = R + Ro and S' = R '  - S. The integration over dS' is carried out to 
give 

W(Ro) = 2-3/27r-1/2 ql q2Rol L -1 exp(-Ro2 /2L 2) f dS exp(-S2 /L 2) 
o 

x [exp(SRo/L 2) - exp(-SRo/L2)] [exp(L2k2/2 - Sk + $2/2L 2) 

x erfc(Lk/x/2 - S/~/2L) - exp(L2k2/2 + Sk + $2/2L 2) 

x erfc(Lk/~/2 + S/~/2L)] (6.5) 

The complementary error function is erfc(z) = 1 - eft(z). We now specialize 
to the photon interaction by putting k = 0 to obtain 

W(Ro) = (21r)-l/2qlqzRo1L -1 exp( -R02 /2L2)  ~ dS exp( -S2 /2L  2) 
o 

x [exp(SRo/L 2) - e x p ( -  SRo/L2)] erf(S/~/2L) (6.6) 

The integration may be carried out for the two limiting cases of  r = 0 and 
r -+ ~ to obtain 

W = rr-1/2qlq2/L for r = 0 
(6.7) 

W = qlqz/Ro for r -+ co 

The latter result is the expected coulomb interaction for point charges 
separated by  the distance Ro while the former result (essentially the self- 
interaction) verifies that the interaction does not diverge for finite L. 

The calculation need only be made to the lowest-order correction terms in 
the parameter L/a o, where a o is the first Bohr radius. In the computat ion of  
the energy of  the 2s level, we need only consider the term in the hydrogenic 
wave function of  the form exp(-Zr/2ao). We have then to compute  

(2s' l WI 2s') = 2-1Zaao  3 f dv exp(-Zr/ao) W(r) (6.8) 

where the terminology 2s' is adopted to signify that the irrelevant part of  
the hydrogenic wave function is not included in the formulas. In the expression 
for W, given in Eq. (6.6), the variable Ro is now replaced by  r. The integration 
over r may be carried through. In some terms the integration over dS may 
also be carried through, and terms are arranged in order to extract the con- 
tribution that would come from the usual coulomb interaction between two 
point charges. Terms of  order higher than (L/ao) 2 are dropped. We find 

(2s' 1WI 2s'> = -2-1Z2e2ao t + 2-1Z4eZaoaL2(K + ½) (6.9) 

with 
o o  

K = 2 [ dw w erfc(w) = ½ (6.10) 
o 

The contribution that would come from the coulomb interaction of  two 
point charges is recognized as (2s'lWc 12s') = -Z2e2/2ao. 
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The result for the kinematical shift on the 2s state is then 

(2s I WI 2s) - (2sl We 12s) = 2-aZ4eZao3L2 (6.11) 

For convenience this may be expressed as: shift = 3.3 x 109Z4(L 2/ao2) MHz. 
The agreement between theory and experiment for this shift in hydrogen is 
about 0.1 MHz, so the parameter L cannot be larger than about 0.3 fermi 
without causing a serious discrepancy. 

An approximation to the interaction between two "point" charges that 
may be of some use will be noted. In the expression for the interaction given 
as Eq. (6.6), we put erf(S/x/2L) = 1 and then carry out the integration over 
dS to obtain 

Wa = (ql qz/Ro) erf(Ro/x/2L) (6.12) 

For large Ro this has the correct asymptotic vatue, qlq2/Ro. Near the origin 
this approximation becomes 21/2n-I/2ql q2/L, which differs from the correct 
value by a factor of 21/2 . We expect the kinematical corrections to arise 
from effects associated with distances of the order of the parameter L. Hence, 
we cannot expect use of this approximation to yield precise results, but the 
correct qualitative behavior and fair quantitative valuation of the approxima- 
tion for all distances should preclude gross errors. The shift on the 2s level in 
hydrogen may be calculated using this approximation for W to yield 

(2s[ Wa 12s) - (2sl We 12s> = 4-1Z4e2a~3L2 (6.13) 

which is in error by a factor of 2. 
We expect kinematical effects on the kinetic energy as well as on the 

potential energy. In Appendix B an effort is made to roughly estimate the 
leading effect on the former. It is found that the effect is of the same order 
in the parameter L as the effect on the potential energy, i.e., of order (L/ao) 2, 
but there are factors which make the shift due to the kinetic energy about an 
order of magnitude smaller than the shift due to the potential energy. 

Appendix A: Coordinate Systems 

The probabilistic character of measurements may be envisioned in terms 
of repeated measurements, performed by a particular observer, of "similar" 
events or, alternatively, in terms of measurements of a particular event per- 
formed by numerous "equivalent" observers. 

In regard to the former situation, it is necessary to define the concept of 
similar events. We envision an apparatus set up to repeatedly perform some 
experiment. The data comprise spatial and time measurements performed 
at the outset of the experiment, the initial conditions (which may be arbitrarily 
extensive in scope), and measurements performed at the conclusion of the 
experiment, the results. The observer performs a set of experiments. In general 
these experiments will be characterized by differing initial conditions and 
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differing results. Reiterating that we adopt a strictly classical conceptual 
basis and do not include probabilistic effects of quantum origin in our think- 
ing (they are to be superimposed when dynamical calculations are made on 
the basis of the kinematics), the differences in the measurements associated 
with the various experiments are attributed to the probabilistic nature of the 
kinematics; i.e., in the absence of such probabilistic effects the experiment 
could be performed repeatedly so that every experiment would be character- 
ized by the same initial conditions and the same results. From the set of 
experiments performed, we select a subset that, by chance, are characterized 
by the same initial conditions; i.e., the same to within whatever tolerance the 
experimenter prescribes. This subset of experiments is defined to be a set of 
similar experiments, and it is the postulate that the results will be characterized 
by probability distributions for spatial and time measurements. 

It is perhaps intuitively helpful if one tries to envision a macroscopic 
situation that simulates, in a crude sense, the situation that is supposed to 
prevail. We may think of an observer who is making spatial measurements (in 
two dimensions, for conceptual simplicity) and who constructs his coordinate 
system on an elastic membrane. The membrane is then supposed to execute 
random oscillations, quite beyond the control of the observer. The coordinate 
system has long-term stability in the sense that the oscillations occur about a 
fixed equilibrium configuration and the distribution of the random oscilla- 
tions has moments that do not change over tong periods of time. Time 
measurements might be performed by a pendulum clock in which the pen- 
dulum is elastic and executes random variations in its length. 

When various observers, each of whom has established his coordinate 
system in some arbitrary manner, perform measurements on a particular 
event, it is necessary that we explore the concept of equivalent observers. In 
order to establish the equivalence of coordinate systems it is necessary to 
perform a set of preliminary experiments. A repeated experiment is set up, 
as described in the previous situation, and, further, a standard for acceptable 
initial conditions is prescribed. A set of experiments is performed, but now 
observations are performed by a set of observers rather than by a single 
observer. From the set of observations made by a particular observer, the 
observer selects a subset of observations that have similar initial conditions 
and which are in accord with the standard; i.e., he selects an acceptable set 
of similar experiments in the sense previously defined. The various observers 
now compare the results of these similar, standard experiments. These results 
are characterized by probability distributions. It is expected that most pro- 
bability distributions for a corresponding observable will differ in that the 
centers of the distributions differ or the moments of the distributions differ. 
By chance, however, there will be a subset of observers who find similar 
probability distributions for all the measurements that comprise the final 
results of the similar, standard experiments. This subset of observers con- 
stitutes the set of equivalent observers. (It need hardly be added that the 
foregoing procedure is not suggested as being of great practicable merit.) 
It is the postulate that the measurements made by the set of equivalent 
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observers on a single event be characterized by probability distributions for 
the spatial and time measurements. 

A macroscopic situation which crudely simulates the situation that is 
supposed to prevail is a set of observers equipped with identical pendulum 
clocks, but the elastic pendulums execute random variations in their lengths, 
variations that are characterized by similar distributions but are uncorrelated 
one with the other. For measurement of spatial coordinates, each observer 
has his own elastic membrane, and the variations in the membranes are un- 
correlated one with the other. 

The general conceptual structure of the probabilistic character of spatial 
and time measurements is similar to the probabilistic character of actual 
laboratory measurements due to random variations in the experimental 
procedures. Thus, what is postulated is that there is a limit on the precision 
of kinematical measurements that is to be associated with the inherent 
structure of space and time. 

The concept of a set of observers in the same Lorentz reference system is 
used. A particular observer may make a set of measurements of the velocity 
of some reference point, e.g., the origin of another observer's coordinate 
system, The velocity measurements will yield probability distributions for 
the velocity components. I f  the distributions center about zero velocity, the 
observer will conclude that the reference point is at rest relative to his co- 
ordinate system. In this manner a set of observers may ascertain that they are 
in the same Lorentz system. 

From time to time in the discussion, the term point is employed, for want 
of  a better term. The term is employed to refer to the location of some 
physical object and it is not intended to refer to some abstraction that would 
appear to be in contradiction to the conceptual basis of these considerations. 
Measurements of the location of the "point" are expected to yield probability 
distributions, in accordance with the postulates. 

Appendix B: Kinematical Effect on the Kinetic Energy 

The computation of kinematical effects on the potential energy does not 
provide guidance towards the treatment of the kinetic energy. Here, we 
attempt to find a prescription that will enable us to make a rough estimate 
of the effect on the kinetic energy of the probabilistic character of the 
kinematics. 

It is helpful to consider the calculation of the kinetic energy in momentum 
space: 

<KE) = <ko [KEop I ko> (B1) 

where ko is the propagation vector. In momentum space the kinetic energy 
operator is simply 

KEop = h2 koZ/2m = mvo2c2/2 (B2) 
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where the last form is a temporary convenience to establish a connection 
with kinematical considerations. The c 2 factor is introduced because, in the 
units adopted for the time, speeds are measured in units of the speed of light. 
The subscripts on k and v are to distinguish between the argument of a pro- 
bability distribution (e.g., v) and the center of the distribution, the nominal 
value (e.g., vo). 

The viewpoint we adopt is to identify v0 2 as the nominal value of the 
square of the speed, but, in accordance with the probabilistic nature of the 
kinematics, what heretofore was a defilfite value is replaced by a probability 
distribution for the speed. (The quantum mechanical averaging over the 
values of vo 2 is deferred, in accordance with the prescription that quantum 
mechanical effects should be superimposed later.) Thus, a reasonable pre- 
scription is to replace vo 2 by the second moment of the speed distribution. 
In order to obtain an estimate of the correction, we assume Gaussian distri- 
butions for the velocity components and for derived distributions, in which 
case the second moment of  the speed distribution is 

v 2 = vo 2 + 2(L 2 + voUT2)/Ho 2 (B3) 

The vo 2 term leads to the conventional result for the kinetic energy. The 
other terms represent the kinematical corrections to the kinetic energy. The 
parameter T is expected to be of  comparable magnitude to L;  in fact, we 
have indicated an argument which equates the two parameters. Thus, the 
correction term in T 2 will be much smaller than the term in L 2 , and the 
former term will no longer be considered. The leading correction to the 
kinetic energy may now be written as 

D = (KE) - (KE)c = (ko lmc2L2/Ho 2 Iko) (B4) 

where the term (KE)c denotes the conventional result for the kinetic energy. 
The interpretation to be given to the quantity Ho is the most obscure 

part of the argument. The time Ho represents the time period over which 
the measurement of the speed is made. One may argue that the system is in 
a state of well-defined energy and a relatively long time is available in which 
to measure the speed; then the correction term is negligible. Such a point of 
view seems unreasonable, and another is suggested if we write He 2 = So2/vo 2. 
The distance So is the distance over which the speed measurement is made, 
and this is limited by the extent of  the system. 

With these considerations in mind we write the kinematical correction as 

D = 2(L2/So 2) (ko ll~2ko2/2m [ko) = 2(L2/So 2) (KE)c (B5) 

For the factor 1/So 2 we adopt the value (1/r2), where r is the radial variable. 
An alternative prescription might be to identify So with the radial variable 

itself and incorporate the 1/So 2 into the quantum mechanical operator, along 
with the ko 2. The implication is that some velocity measurements must be 
made in very short intervals of time, which, in turn, implies velocity distri- 
butions with arbitrarily large dispersions. The conceptual structure of  the 
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situation provides no basis for such an eventuality, and we conclude that 
such a prescription would be incorrect. 

Unlike the corrections to the potential energy, the corrections to the 
kinetic energy should be comparable for the 2s and 2p levels. The energy 
shift between the levels is desired: 

Shift = D(2s) - D(2p) = 2La(KE)2s((1/r2)2s - (1/r2)2p) (B6) 

The result is now in a form where comparison may be made with the shift 
due to kinematical effects on the potential energy, which may be expressed as 

Shift(PE) = (4Z 2 L Z/ao 2) ( KE)2s = 16L 2 ( 1/r 2)2s(KE)2s (B 7) 

Evaluation of  the (1/r z) terms gives, for the shift due to kinematical effects 
on the kinetic energy: Shift = (Z2L2/3ao2)(KE)2s. Although kinematical 
corrections to both the potential and kinetic energies are of  the same order 
in the parameter L/ao, the correction to the kinetic energy is smaller by  about 
an order of  magnitude. 
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